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Abstract
An analytical perturbative method is suggested for solving the Helmholtz
equation (∇2 + k2)ψ = 0 in two dimensions where ψ vanishes on an irregular
closed curve. We can thus find the energy levels of a quantum mechanical
particle confined in an infinitely deep potential well in two dimensions having
an irregular boundary or the vibration frequencies of a membrane whose edge
is an irregular closed curve. The method is tested by calculating the energy
levels for an elliptical and a supercircular boundary and comparing with the
results obtained numerically. Further, the phenomenon of level crossing due to
shape variation is also discussed.

PACS numbers: 03.65.−W, 31.15.Md, 03.65.Ge

1. Introduction

The energy levels of a quantum particle confined in a 2D regular box can be solved exactly
only in the cases of a square and a triangle and in the limiting case of a circle. While the
determination of the energy levels for the circular or the square boundary is a trivial exercise,
the problem of the triangular boundary is more formidable [1]. The corresponding problems
in the classical regime can be the flow of liquid through a pipe of a polygonal cross-section or
the free vibration of a membrane (with a fixed boundary) of a polygonal shape. The classical
problems, like their quantum counterparts, are amenable to simple analytical treatments only
in the cases of a circle, a square and a triangle. The problem of a regular polygonal box has
been solved by perturbing about the equivalent circle and the results have been quite accurate
[2]. The same problem has been solved by Cureton and Kuttler [3] in the context of vibration
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of membranes. Here we address the problem of finding out the energy eigenvalues when the
boundary has no simple geometric shape. The Schrödinger equation for a particle of mass m
and energy E confined in an infinitely deep 2D potential well is

− h̄2

2m
∇2ψ = Eψ. (1a)

The above equation can be recast as

(∇2 + k2)ψ = 0, (1b)

where k =
√

2mE

h̄2 . Thus the problem boils down to solving the Helmholtz equation with the
Dirichlet condition ψ = 0 on the ‘irregular’ boundary. Exact solutions can be obtained only
in a few special cases as mentioned earlier. The standard procedure is to choose a curvilinear
coordinate system suited to the geometry of the problem and employ the method of separation
of variables. For a boundary having an irregular shape no particular coordinate system will
be useful. Hence, we resort to perturbative methods to solve the problem. Here we will
perturb the boundary about a circle so that in our problem solutions can be obtained in the
form of corrections to the solutions for the circular boundary. Until now, most of the efforts
at finding out the eigenvalues of the Helmholtz equation for an irregular boundary have been
numerical. Mazumdar [4–6] reviews the approximate methods invoked for this problem. In
addition to an extensive summary of theoretical results, Kuttler and Sigillito [7] also give a
comprehensive review of the different numerical methods employed. More recently, Amore
[8] gives a numerical recipe using a collocation approach based on little sinc functions. As
far as analytical works are concerned, Rayleigh [9] and also Fetter and Walecka [10] find the
ground state energy eigenvalues for a vibrating membrane. A general formalism has been
suggested by Morse and Feshbach [11] using the Green functions. Parker and Mote [12] have
put forward a perturbative method for finding the eigenvalues and the eigenfunctions through
fifth order. A similar method has been proposed by Nayfeh [13]. However, the eigenvalues are
found out only to the first order. Read [14] has also suggested a general analytical approach
to the problem. Bera et al [15] have proposed a perturbative approach to the problem but
failed to express the solutions in a closed form. Our approach is similar in spirit to that of
Bera. Here we present a solution to the problem in a more systematic and efficient manner.
The perturbative correction to the eigenvalues and the eigenfunctions is presented in a closed
form at each order of perturbation. The method is tested by comparing the analytical results
with those obtained numerically for a supercircular and an elliptical boundary. Further, the
phenomenon of energy level crossing as induced by the shape variation is also dealt with for
both the boundaries. In section 2 we set up our general scheme and in section 3 we apply it to
the cases of a supercircle and an ellipse. A short conclusion is presented in section 4.

2. Perturbation about the equivalent circle

It was shown by Rayleigh [9] that the fundamental frequency of a membrane whose boundary is
not extravagantly elongated is nearly same as that of a mechanically similar circular membrane
having the same area. The above result naturally leads us to develop, in the following, a
perturbation about the equal area circle.

Given, any r(θ) = r(θ + 2π), defining the boundary in 2D enclosing an area, A =
1
2

∫ 2π

0 r2(θ) dθ , we first construct a circle of radius, R0, such that

A = πR2
0 . (2)

2
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We can then expand r(θ) about R0 in terms of Fourier series at different orders of smallness
(denoted by λ) as

r(θ) = R0

[
1 +

∞∑
σ=1

λσf (σ)(θ)

]
, (3)

where

f (σ)(θ) =
∞∑

n=0

(
C(σ)

n cos nθ + S(σ)
n sin nθ

)
. (4)

Here, for simplicity, we have considered a one parameter (deformation parameter), λ,
dependence of r(θ), which thus represents a family of curves which reduce to the equation
for a circle in the limiting case λ → 0. In principle, λ should be much smaller than unity
ensuring that the variation of r(θ) with θ is small enough to permit the use of perturbative
methods. However, as we will see in the following section that for the case of a supercircle
λ ∼ 1 works quite well and keeps the results within 10% error. We also note here that the
Fourier expansion of the boundary in (3) is rather unusual and makes our method different
from all other existing methods. Here in fact each f (σ)(θ) is a Fourier series in itself of order
λσ . Earlier methods in the literature had worked with only one Fourier series—that is by
summing all the orders into one. The main advantage in treating the problem like this is to
have an analogy with the time-independent perturbation scheme of quantum mechanics and
obtain closed form solutions at each order of λ. If we now calculate the area using (3), (4)
and equate it with πR2

0, we arrive at the following constraint relations among the Fourier
coefficients:

∞∑
n=0

σ−1∑
ν=1

[
C(ν)

n C(σ−ν)
n + 2C

(ν)
0 C

(σ−ν)
0 + S(ν)

n S(σ−ν)
n

] = −4C
(σ)
0 . (5a)

In particular we have,

C
(1)
0 = 0, (5b)

and

4C
(2)
0 = −

∞∑
n=1

[
C(1)2

n + S(1)2
n

]
. (5c)

Now, as a first approximation, the energy E0 of the particle confined by r(θ) will be that of a
particle enclosed in a circle of radius R0

E0 = h̄2ρ2
l,j

2mR2
0

, (6)

with ρl,j = kl,jR0 being the j th node of the lth order Bessel function. The next step is to
improve upon the ‘equal area’ approximation by perturbing the equivalent circle and finding
out the first- and the second-order corrections to the eigenvalues.

We now treat λ as the perturbation parameter and expand ψ and E as

ψ = ψ0 + λψ1 + λ2ψ2 + · · · , (7a)

E = E0 + λE1 + λ2E2 + · · · . (7b)

Using (7a), (7b) in (1a), equating the coefficients of different powers of λ to 0 and after some
rearrangement we arrive at the set of equations

3
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∇2 +

2mE0

h̄2

)
ψ0 = 0, (8a)

(
∇2 +

2mE0

h̄2

)
ψ1 = −2mE1

h̄2 ψ0, (8b)

(
∇2 +

2mE0

h̄2

)
ψ2 = −2m

h̄2 (E1ψ1 + E2ψ0). (8c)

Equation (8a) can readily be identified as the equation for the circular boundary with ψ0 as
the eigenfunction corresponding to energy E0.

The boundary condition is

ψ(R0 + λR0f
(1) + λ2R0f

(2) + · · ·) = 0.

Taylor expanding about r = R0, with (7a) and equating the coefficients of different powers of
λ to 0, we find

ψ0(R0) = 0, (9a)

ψ1(R0) + R0f
(1)ψ ′

0(R0) = 0, (9b)

ψ2(R0) + R0f
(1)ψ ′

1(R0) + R0f
(2)ψ ′

0(R0) + 1
2R2

0f
(1)2ψ ′′

0 (R0) = 0. (9c)

We discuss separately the cases l = 0 and l �= 0.

2.1. Calculation of energy for l = 0 state

For the l = 0 state

ψ0 = NJ0(ρ), (10)

where ρ = kr, J0 is the 0th order Bessel function, and N = 1/(
√

πR0J1(ρ0,j )) is the
normalization constant. E0 is obtained from (6) with l = 0, and an appropriate j , as ψ0

satisfies boundary condition (9a). The first-order correction to the wavefunction, obtained as
a solution to (8b) is

ψ1 =
∞∑

p=1

(ap cos pθ + āp sin pθ)Jp + a0J0 − ρE1

2E0
NJ1, (11)

where the last term is the particular integral to (8b). Incorporating (11) in (9b) and separately
matching the coefficients of the cosine and the sine terms we have

ap = −ρ0,jNC(1)
p

J ′
0(ρ0,j )

Jp(ρ0,j )
, (12a)

āp = −ρ0,jNS(1)
p

J ′
0(ρ0,j )

Jp(ρ0,j )
, (12b)

E1 = 0. (12c)

The remaining constant a0 can be found out by normalizing the corrected wavefunction over
the enclosed area. However, that is not required right now for our purpose. Equation (12c)
implies that there cannot be any correction to the energy in the first order. So any possible
correction to the energy can only come from the second or higher orders.

4
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In a similar fashion the second correction to the wavefunction as a solution to (8c) with
E1 = 0 is found out to be

ψ2 =
∞∑

p=1

(bp cos pθ + b̄p sin pθ)Jp + b0J0 − ρE2

2E0
NJ1, (13)

which, when introduced in (9c), now yields

E2 = E0

[ ∞∑
k=1

(
C

(1)2
k + S

(1)2
k

) [
1

2
+ ρ0,j

J ′
k(ρ0,j )

Jk(ρ0,j )

]
− 2C

(2)
0

]
, (14a)

bp = −ρ0,j J
′
0(ρ0,j )

[
NC(2)

p + a0C
(1)
p

]
+

ρ0,j J
′
0(ρ0,j )N

2

∞∑
k=1

[
C

(1)
p+kC

(1)
k + S

(1)
p+kS

(1)
k

+ C
(1)
|p−k|C

(1)
k − S

(1)
p−kS

(1)
k + S

(1)
k−pS

(1)
k

] (
1

2
+ ρ0,j

J ′
k(ρ0,j )

Jk(ρ0,j )

)
, (14b)

b̄p = −ρ0,j J
′
0(ρ0,j )

[
NS(2)

p + a0S
(1)
p

]
+

ρ0,j J
′
0(ρ0,j )N

2

∞∑
k=1

[
S

(1)
p+kC

(1)
k − C

(1)
p+kS

(1)
k

+ C
(1)
|p−k|S

(1)
k − S

(1)
k−pC

(1)
k + S

(1)
p−kC

(1)
k

] (
1

2
+ ρ0,j

J ′
k(ρ0,j )

Jk(ρ0,j )

)
. (14c)

As before, the remaining constant b0 can be determined by normalizing the wavefunction up
to the order of λ2.

2.2. Calculation of energy for l �= 0 state

The l �= 0 states come in two varieties

ψ0 = NlJl(ρ)

(
cos lθ

sin lθ

)
, (15)

where Nl = √
2/(

√
πR0J

′
l (ρl,j )). E0 is given by (6). For simplicity, we assume that S(σ)

n = 0
for all σ . We shall first work with

ψ0 = NlJl(ρ) cos lθ. (16)

The result for the other case will be similar. The first correction to the wavefunction obtained
as a solution to (8b) is

ψ1 =
∞∑

p=0,p �=l

apJp cos pθ +

(
alJl − E1

E0

ρ

2
NlJl+1

)
cos lθ. (17)

Following a similar procedure as that for the ground state we now have

E1 = −C
(1)
2l E0, (18a)

ap = −ρl,j

2
Nl

J ′
l (ρl,j )

Jp(ρl,j )

(
C

(1)
p+l + C

(1)
|p−l|

)
, for p �= 0, l, (18b)

a0 = −ρl,j

2
Nl

J ′
l (ρl,j )

J0(ρl,j )
C

(1)
l . (18c)

al can be obtained from the normalization condition. The second-order corrections yield

5
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ψ2 =
∞∑

m=0

[
bmJm − ρE1

2E0
amJm+1

]
cos mθ +

[
C

(1)2
2l

ρ

4
Jl+2 − E2

E0
Jl+1

]
Nl

ρ

2
cos lθ, (19a)

E2

E0
= C

(1)2
2l

2
+

1

4

∞∑
n=1

C(1)
n

(
2C(1)

n + C
(1)
2l+n + C

(1)
|2l−n|

) − 2C
(2)
0 − C

(2)
2l

+
∞∑

n=1
n�=l

(
C

(1)
n+l + C

(1)
|n−l|

)2 ρl,j J
′
n(ρl,j )

2Jn(ρl,j )
+ C

(1)2
l

ρl,j J
′
0(ρl,j )

J0(ρl,j )
. (19b)

The constants bm can also be determined as in the case of the ground state. However, they
are not needed now but their need would arise when one wished to evaluate the third-order
correction for energy. For the case

ψ0 = NlJl(ρ) sin lθ, (20)

similar calculations result in

ψ1 =
∞∑

p=1,p �=l

āpJp sin pθ +

(
ālJl − E1

E0

ρ

2
NlJl+1

)
sin lθ, (21a)

E1 = C
(1)
2l E0, (21b)

āp = ρl,j

2
Nl

J ′
l (ρl,j )

Jp(ρl,j )

(
C

(1)
p+l − C

(1)
|p−l|

)
, for p �= l, (21c)

ψ2 =
∞∑

m=1

[
b̄mJm − ρE1

2E0
āmJm+1

]
sin mθ +

[
C

(1)2
2l

ρ

4
Jl+2 − E2

E0
Jl+1

]
Nl

ρ

2
sin lθ, (21d)

and

E2

E0
= C

(1)2
2l

2
+

1

4

∞∑
n=1

C(1)
n

(
2C(1)

n − C
(1)
2l+n − C

(1)
|2l−n|

) − 2C
(2)
0 + C

(2)
2l

+
∞∑

n=1,n�=l

(
C

(1)
n+l − C

(1)
|n−l|

)2 ρl,j J
′
n(ρl,j )

2Jn(ρl,j )
. (21e)

We do not give the expressions for b̄m, as they are not needed now.

3. Application to simple cases

The general formalism having been outlined above, we now estimate the energy levels of
a supercircle and an ellipse where direct comparison with the numerical results can be
made. Numerical results were calculated using the finite difference method. Both square
and triangular grids were used separately for the numerical simulation. The results agree quite
well for both types of grids.

3.1. A particle enclosed in a supercircular enclosure

The Piet Hein superellipse [16] is a special case of Lamé curves described by

|x|t
at

+
|y|t
bt

= 1, (22)

6



J. Phys. A: Math. Theor. 42 (2009) 195301 S Chakraborty et al

Figure 1. Shape of the supercircle for different values of t.

with t > 1. a and b are positive real numbers. They are also known as Lamé curves or Lamé
ovals [17]. Superellipses can be parametrically described as

x = a cos2/t φ and y = b sin2/t φ. (23)

Different values of t would give us closed curves of different shapes. For t > 1 we consider
only the real positive values of cos2/t φ and sin2/t φ for 0 � φ � π

2 and use the symmetry
of the figure to continue to the other quadrants. We are interested in the case a = b, which
corresponds to a supercircle. In polar coordinates the equation for the supercircle is

r = a

(cost θ + sint θ)
1
t

, (24)

and the radius of the equal area circle is

R0 = a

√
2

tπ

[



(
1
t

)]
√[



(

2
t

)] . (25)

The shapes of supercircles for different values of t are shown in figure 1. t = 2 describes
a circle of unit radius. In this case we have a natural deformation parameter, λ = 2 − t .
Now r(θ) given by (24) can be Fourier expanded and after some calculation one arrives at the
following:

r(θ) = R0

[
1 + λ

∞∑
n=1

C
(1)
4n cos 4nθ + λ2

∞∑
n=0

C
(2)
4n cos 4nθ + O(λ3) · · ·

]
, (26)

where the Fourier coefficients are found to be

C
(1)
4n = − 1

4n(4n2 − 1)
,

C
(2)
0 = −1

4

∞∑
n=1

[
1

4n(4n2 − 1)

]2

= 1

16

(
1 − 5π2

48

)
= −0.001 7552,

7
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Figure 2. Comparison of the energy eigenvalues obtained numerically and analytically for a

particle enclosed in a supercircular boundary shown for the first six states (in units of h̄2

2mR2
0

).

Deformation parameter λ = 2 − t .

using (5c) and

C
(2)
4 = 1

32

(
3π2

8
− 23

9

)
= 0.035 7983.

Using these Fourier coefficients, the first six energy levels are calculated for the supercircular
boundary in the range −1 � λ � 1, and compared with the numerically obtained values. This
is shown in figure 2. The numerical results are shown by discrete points and the analytical
ones by the continuous lines. The fact that even for such a wide range of λ the analytical
results are in fairly good agreement with those obtained numerically does indeed justify the
validity of our formalism. We see that for |λ| as large as 1 the deviations of analytical values
from the numerical ones are within 10%. Furthermore, it is to be noted that the energy
level corresponding to the unperturbed wavefunction ψ0 = N2J2 cos 2θ is strongly affected
compared to the others and crosses over to its counterpart ψ0 = N2J2 sin 2θ at λ = 0. This
crossing of energy levels is solely induced by the variation in the shape of the boundary of the
potential well.

3.2. A particle enclosed in an elliptical enclosure

The determination of the energy eigenvalues of a particle enclosed in 2D with an elliptical
boundary has been investigated extensively. In this case the separation of variables is possible
in an elliptical coordinate system and the problem is exactly solvable in principle. The problem
reduces to solving the Mathieu differential equation for each of the separated coordinates.
Extracting out the eigenvalues and the eigenfuctions from the above is a difficult task and
often one relies on numerical estimation. So far most of the efforts have been directed at the
numerical estimation of the eigenvalues [18–20]. Recently, an analytical method has been

8
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Figure 3. Shape of the ellipse for different values of λ = a−b
a+b

.

suggested by Wu and Shivakumar [21]. Here we propose a simpler approach to the problem
by our perturbative method. The equation for an ellipse with semi-axes a and b, in polar
coordinates is

r(θ) = b√
1 − (

1 − b2

a2

)
cos2 θ

. (27)

Defining the deformation parameter

λ = a − b

a + b
, (28)

we show the shapes of the ellipses for different values of λ in figure 3. Again λ = 0 describes
a circle with unit radius. Now, r(θ) in (27) can be recast as

r = R0
[
1 + λ cos 2θ − 1

4λ2 + 3
4λ2 cos 4θ + O(λ3) + · · ·] , (29)

with R0 = √
ab. Comparing with our general Fourier series of (4), we observe that

C
(1)
2 = 1, C

(2)
0 = − 1

4 , and C
(2)
4 = 3

4 .

Using (12c), (14a), (18a), (19b), (21b), (21e) we find

E1

(
Jl cos lθ

Jl sin lθ

)
=

(−
+

)
E0δl1, (30a)

and

E2

(
Jl cos lθ

Jl sin lθ

)
= E0

∑
p,|p−l|=2

(
δl1

2
+ 1 +

ρl,j J
′
p(ρl,j )

2Jp(ρl,j )

)

+

⎛
⎜⎜⎝

−3

4
+

ρl,j J
′
0(ρl,j )

J0(ρl,j )

3

4

⎞
⎟⎟⎠ E0δ2l , (30b)

where δij is the Kronecker delta. The results for the elliptical boundary are shown in figure 4.
From figure 4 it is seen that as in the case of the supercircle here also the J1 cos θ state is
strongly affected by the boundary perturbation and crosses over to its counterpart J1 sin θ at
λ = 0. However, quite interestingly, the J2 states do not cross but are rather repelled by
each other. They touch each other tangentially at λ = 0. While for one of these states,
J2 sin 2θ , the analytical method works quite well, it has a restricted validity for the other one,

9
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Figure 4. Comparison of the energy eigenvalues obtained numerically and analytically for a particle

confined in an elliptical boundary shown for the first five states (in units of h̄2

2mR2
0

). Deformation

parameter λ = a−b
a+b

.

namely, J2 cos 2θ . In fact, we compared the energy levels for the first ten states and found
the agreement between the analytical and the numerical results to be quite satisfactory except
when the levels repel each other. This phenomenon of level repulsion also goes by the name
of ‘loci veering’ in the literature. In the case of level repulsion the validity of the perturbation
theory for the Jl cos lθ states is restricted to a small range in λ (e.g. |λ| � 0.08). This is in
sharp contrast to the case where there is no repulsion in which case the agreement with the
perturbation theory persists over a wide range.

4. Conclusion

One of the principle virtues of the method proposed is its generality. With slight modification,
the formalism can readily be adopted to study the shape dependence of the eigenvalues of a
vibrating membrane with Dirichlet conditions on an irregular boundary. The approach can also
be useful in studying the modes of propagation of electromagnetic waves in a waveguide with
an irregular cross-section. In fact, recently, Dubertrand et al [22] have employed a similar
scheme for the propagation of electromagnetic waves in open dielectric systems. Another
potential area where this formalism might be useful is in the study of quantum dots. This
field has been an area of vigorous research for the past few years. 2D quantum dots are
generally taken to have a circular symmetry. However, in practice such a symmetry cannot be
strictly ensured. There are bound to be small deviations from exact circular symmetry. Hence,
probes have been constructed to investigate the shape of the dots [23–25]. As shown in this
paper the energy eigenvalues of a particle confined in 2D in an infinitely deep potential well
will essentially depend upon the shape of the confining region. Hence a study of the shape
dependence of the energy levels might prove to be useful in shedding light upon the actual
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shapes of the dots. Another significant aspect of our formalism is the use of the general Fourier
series to express the deviation of the boundary from a circular one which allows us to treat
any sort of boundary within the limit of small perturbation for which our formalism is valid.
Even boundaries with sharp singularities can be treated in our formalism quite efficiently. For
example, the square which is a special case of a supercircle with t = 1 can be treated quite
efficiently by our method. This is borne out by the accuracy of the results obtained by using
our formalism in the case of the supercircle for t = 1(λ = 1), which corresponds to a square
(figures 1 and 2). In fact, to find out the energy and the wavefunction corrections all one
needs is to find the Fourier coefficients for the closed curve and substitute them in the relevant
expressions. Further, the corrections to the energy eigenvalue and the eigenfunctions are found
out exactly in a closed form at each order of perturbation without any major approximations
which is indeed remarkable. The case of the supercircular boundary shows that even for quite
large perturbations the method yields satisfactory results. The accuracy of the method can still
be improved by including higher order corrections. In fact, we have also found the third-order
corrections, although the results are not included here. In contrast, the case of the elliptical
boundary points out to the failure of the perturbation theory whenever the energy levels exhibit
repulsion. This provides potential topics for future investigations. Another point which we
want to emphasis here is that the success (and also the efficiency) of the formalism depends
to a large extent upon the judicious choice of the deformation parameter λ. For the case of the
ellipse we defined λ to be equal to a−b

a+b
whereas the eccentricity ε would seem to be a more

appropriate candidate for λ. For the elliptical boundary we have considered deformations up
to the extent where a : b = 2 : 1 for which λ = 0.333. Had we formulated the problem in
terms of the eccentricity the same deformation would have led to the value of ε = 0.866. It
can also be shown that in that case the deformation parameter would actually be ε2, so that
for the same deformation we would have ε2 = 0.75 which is obviously much larger than the
parameter which we have actually used here. Such a high value of the deformation parameter
goes against the very essence of the perturbative nature of the method. This means that while
we have terminated the Fourier series and also the eigenvalues at the second order of smallness
when working with λ = a−b

a+b
, for λ = ε2 we would have to consider higher order terms to get

the same accuracy. Finally, we note that the same formalism can also be adopted by perturbing
a square or a rectangular boundary for which the results are exactly known.
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